We want to determine fixed points of functions:
def. p is a fixed point of g if $g(p)=p$

Fixed point algorithms can be made into root finding algorithms (and vice-versa)

Theorem 2.3

1. if $g \in C([a, b])$ and g takes vakes in $[a, b]$, then g has at least one fixed point.
2. if g has a derivative whose absolute value is strictly bounded by 1 , then it has a unique fixed point.

Proof part 1 of 2.3.

really clever:

1. let $h(x)=g(x)-x$
2. if $h(a)=0$ or $h(b)=0$ then we have a fixed point
3. otherwise, since $g(a)>a$ and $g(b)<b$, we can apply intermediate value theorem to h

Proof part 2 of 2.3

if there are two fixed points, then they both are on the line $y=x$ (draw a picture). But by the mean value theorem, we get a point where the derivative is 1 , this is a contradiction.

Fixed point iteration

to determine fixed point for a continuous function:

Algorithm

1. guess p_{0}
2. while $g\left(p_{i}\right) \neq p_{i}$
a. let $p_{i+1}=g\left(p_{i}\right)$
(literally just keep plugging in hoping things work out)

Theorem 2.4 (Fixed-Point Theorem)

if $g \in C([a, b])$ with absolute value of derivative strictly less than 1 on (a, b), then the fixed point algoithm converges to a unique fixed point.

Proof.

1. $\left|p_{n}-p\right|=\left|g\left(p_{n-1}\right)-g(p)\right|=\left|g^{\prime}(\xi)\right|\left|p_{n-1}-p\right| \leq k\left|p_{n-1}-p\right|$
2. $\left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right| \leq k^{2}\left|p_{n-2}-p\right| \leq \cdots \leq k^{n}\left|p_{0}-p\right| \rightarrow 0$ since $k<1$

Corollary 2.5

$\left|p_{n}-p\right| \leq \frac{k^{n}}{1-k}\left|p_{1}-p_{0}\right|$
Proof.

1. $\left|p_{n}-p\right|=\lim _{\substack{m \rightarrow \infty \\ m-n-1}}\left|p_{n}-p_{m}\right|$
2. $\left|p_{n}-p_{m}\right| \leq \sum_{i=0}^{\substack{m \rightarrow \infty \\ m-n-1}}\left|p_{n+i+1}-p_{n+i}\right| \leq \sum_{i=0}^{m-n-1} k^{n+i}\left|p_{1}-p_{0}\right|=k^{n}\left|p_{1}-p_{0}\right| \sum_{i=0}^{m-n-1} k^{i}$
3. $\lim _{m \rightarrow \infty}\left|p_{n}-p_{m}\right| \leq \lim _{m \rightarrow \infty} k^{n}\left|p_{1}-p_{0}\right| \sum_{i=0}^{m-n-1} k^{i}=k^{n}\left|p_{1}-p_{0}\right| \sum_{i=0}^{\infty} k^{i}=k^{n}\left|p_{1}-p_{0}\right| \frac{1}{1-k}$
